Derived equivalences between symmetric special biserial algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derived equivalence of symmetric special biserial algebras

We introduce Brauer complex of symmetric SB-algebra, and reformulate in terms of Brauer complex the so far known invariants of stable and derived equivalence of symmetric SB-algebras. In particular, the genus of Brauer complex turns out to be invariant under derived equivalence. We study transformations of Brauer complexes which preserve class of derived equivalence. Additionally, we establish ...

متن کامل

Equivalences of Derived Categories for Symmetric Algebras

It is about a decade since Broué made his celebrated conjecture [2] on equivalences of derived categories in block theory: that the module categories of a block algebra A of a finite group algebra and its Brauer correspondent B should have equivalent derived categories if their defect group is abelian. Since then, character-theoretic evidence for the conjecture has accumulated rapidly, but unti...

متن کامل

The Yoneda Algebras of Symmetric Special Biserial Algebras Are Finitely Generated

By using the Benson–Carlson diagrammatic method, a detailed combinatorial description is given for the syzygies of simple modules over special biserial algebras. With the help of this description, it is proved that the Yoneda algebras of the algebras mentioned above are finitely generated.

متن کامل

Special biserial algebras with no outer derivations

Let A be a special biserial algebra over an algebraically closed field. We show that the first Hohchshild cohomology group of A with coefficients in the bimodule A vanishes if and only if A is representation finite and simply connected (in the sense of Bongartz and Gabriel), if and only if the Euler characteristic of Q equals the number of indecomposable non uniserial projective injective A-mod...

متن کامل

Derived equivalences and Gorenstein algebras

In this note, we introduce the notion of Gorenstein algebras. Let R be a commutative Gorenstein ring and A a noetherian R-algebra. We call A a Gorenstein R-algebra if A has Gorenstein dimension zero as an R-module (see [2]), add(D(AA)) = PA, where D = HomR(−, R), and Ap is projective as an Rpmodule for all p ∈ Spec R with dim Rp < dim R. Note that if dim R = ∞ then a Gorenstein R-algebra A is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2015

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2014.07.012